3.1.96 \(\int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx\) [96]

3.1.96.1 Optimal result
3.1.96.2 Mathematica [C] (verified)
3.1.96.3 Rubi [A] (verified)
3.1.96.4 Maple [C] (verified)
3.1.96.5 Fricas [C] (verification not implemented)
3.1.96.6 Sympy [F]
3.1.96.7 Maxima [F]
3.1.96.8 Giac [F]
3.1.96.9 Mupad [F(-1)]

3.1.96.1 Optimal result

Integrand size = 19, antiderivative size = 281 \[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\frac {\operatorname {CosIntegral}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}+\frac {\operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right ) \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}+\frac {\operatorname {CosIntegral}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}-\frac {\cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b}+\frac {\cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b} \]

output
1/3*cos(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))*Si(-(-1)^(1/3)*a^(1/3)*d/b^(1/3)+d 
*x)/b+1/3*cos(c-a^(1/3)*d/b^(1/3))*Si(a^(1/3)*d/b^(1/3)+d*x)/b+1/3*cos(c-( 
-1)^(2/3)*a^(1/3)*d/b^(1/3))*Si((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)/b+1/3*Ci 
(a^(1/3)*d/b^(1/3)+d*x)*sin(c-a^(1/3)*d/b^(1/3))/b+1/3*Ci((-1)^(1/3)*a^(1/ 
3)*d/b^(1/3)-d*x)*sin(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))/b+1/3*Ci((-1)^(2/3)* 
a^(1/3)*d/b^(1/3)+d*x)*sin(c-(-1)^(2/3)*a^(1/3)*d/b^(1/3))/b
 
3.1.96.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.

Time = 5.04 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.66 \[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\frac {i \left (\text {RootSum}\left [a+b \text {$\#$1}^3\&,\cos (c+d \text {$\#$1}) \operatorname {CosIntegral}(d (x-\text {$\#$1}))-i \operatorname {CosIntegral}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})-i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))\&\right ]-\text {RootSum}\left [a+b \text {$\#$1}^3\&,\cos (c+d \text {$\#$1}) \operatorname {CosIntegral}(d (x-\text {$\#$1}))+i \operatorname {CosIntegral}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})+i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))\&\right ]\right )}{6 b} \]

input
Integrate[(x^2*Sin[c + d*x])/(a + b*x^3),x]
 
output
((I/6)*(RootSum[a + b*#1^3 & , Cos[c + d*#1]*CosIntegral[d*(x - #1)] - I*C 
osIntegral[d*(x - #1)]*Sin[c + d*#1] - I*Cos[c + d*#1]*SinIntegral[d*(x - 
#1)] - Sin[c + d*#1]*SinIntegral[d*(x - #1)] & ] - RootSum[a + b*#1^3 & , 
Cos[c + d*#1]*CosIntegral[d*(x - #1)] + I*CosIntegral[d*(x - #1)]*Sin[c + 
d*#1] + I*Cos[c + d*#1]*SinIntegral[d*(x - #1)] - Sin[c + d*#1]*SinIntegra 
l[d*(x - #1)] & ]))/b
 
3.1.96.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3826, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx\)

\(\Big \downarrow \) 3826

\(\displaystyle \int \left (\frac {\sin (c+d x)}{3 b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {\sin (c+d x)}{3 b^{2/3} \left (\sqrt [3]{b} x-\sqrt [3]{-1} \sqrt [3]{a}\right )}+\frac {\sin (c+d x)}{3 b^{2/3} \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}+\frac {\sin \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}-\frac {\cos \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}+\frac {\cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}\)

input
Int[(x^2*Sin[c + d*x])/(a + b*x^3),x]
 
output
(CosIntegral[(a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - (a^(1/3)*d)/b^(1/3)])/(3*b 
) + (CosIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d*x]*Sin[c + ((-1)^(1/3) 
*a^(1/3)*d)/b^(1/3)])/(3*b) + (CosIntegral[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) 
+ d*x]*Sin[c - ((-1)^(2/3)*a^(1/3)*d)/b^(1/3)])/(3*b) - (Cos[c + ((-1)^(1/ 
3)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d*x])/ 
(3*b) + (Cos[c - (a^(1/3)*d)/b^(1/3)]*SinIntegral[(a^(1/3)*d)/b^(1/3) + d* 
x])/(3*b) + (Cos[c - ((-1)^(2/3)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((-1)^(2/ 
3)*a^(1/3)*d)/b^(1/3) + d*x])/(3*b)
 

3.1.96.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3826
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Sym 
bol] :> Int[ExpandIntegrand[Sin[c + d*x], x^m*(a + b*x^n)^p, x], x] /; Free 
Q[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, - 
1]) && IntegerQ[m]
 
3.1.96.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.29 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.95

method result size
derivativedivides \(\frac {\frac {d^{3} c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}-\frac {2 d^{3} c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}+\frac {d^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1}^{2} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}}{d^{3}}\) \(266\)
default \(\frac {\frac {d^{3} c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}-\frac {2 d^{3} c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}+\frac {d^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1}^{2} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}}{d^{3}}\) \(266\)
risch \(-\frac {i c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}+\frac {i c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {{\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}+\frac {c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{3 b}-\frac {c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{3 b}\) \(490\)

input
int(x^2*sin(d*x+c)/(b*x^3+a),x,method=_RETURNVERBOSE)
 
output
1/d^3*(1/3*d^3*c^2/b*sum(1/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+C 
i(d*x-_R1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3 
))-2/3*d^3*c/b*sum(_R1/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d* 
x-_R1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))+1 
/3*d^3/b*sum(_R1^2/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d*x-_R 
1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3)))
 
3.1.96.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.04 \[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\frac {i \, {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} - i \, c\right )} - i \, {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} + i \, c\right )} + i \, {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} - i \, c\right )} - i \, {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} + i \, c\right )} - i \, {\rm Ei}\left (i \, d x + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (i \, c - \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )} + i \, {\rm Ei}\left (-i \, d x + \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (-i \, c - \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )}}{6 \, b} \]

input
integrate(x^2*sin(d*x+c)/(b*x^3+a),x, algorithm="fricas")
 
output
1/6*(I*Ei(-I*d*x + 1/2*(I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 1))*e^(1/2*(I*a*d^3 
/b)^(1/3)*(I*sqrt(3) + 1) - I*c) - I*Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(-I 
*sqrt(3) - 1))*e^(1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) + 1) + I*c) + I*Ei(-I* 
d*x + 1/2*(I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(I*a*d^3/b)^(1/3)*(-I* 
sqrt(3) + 1) - I*c) - I*Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1)) 
*e^(1/2*(-I*a*d^3/b)^(1/3)*(-I*sqrt(3) + 1) + I*c) - I*Ei(I*d*x + (-I*a*d^ 
3/b)^(1/3))*e^(I*c - (-I*a*d^3/b)^(1/3)) + I*Ei(-I*d*x + (I*a*d^3/b)^(1/3) 
)*e^(-I*c - (I*a*d^3/b)^(1/3)))/b
 
3.1.96.6 Sympy [F]

\[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\int \frac {x^{2} \sin {\left (c + d x \right )}}{a + b x^{3}}\, dx \]

input
integrate(x**2*sin(d*x+c)/(b*x**3+a),x)
 
output
Integral(x**2*sin(c + d*x)/(a + b*x**3), x)
 
3.1.96.7 Maxima [F]

\[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \sin \left (d x + c\right )}{b x^{3} + a} \,d x } \]

input
integrate(x^2*sin(d*x+c)/(b*x^3+a),x, algorithm="maxima")
 
output
-1/2*((cos(c)^2 + sin(c)^2)*d*x^2*cos(d*x + c) + (cos(c)^2 + sin(c)^2)*x*s 
in(d*x + c) + ((d*x^2*cos(c) - x*sin(c))*cos(d*x + c)^2 + (d*x^2*cos(c) - 
x*sin(c))*sin(d*x + c)^2)*cos(d*x + 2*c) + 2*(((b*cos(c)^2 + b*sin(c)^2)*d 
^2*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d^2)*cos(d*x + c)^2 + ((b*cos(c)^2 + b* 
sin(c)^2)*d^2*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d^2)*sin(d*x + c)^2)*integra 
te(-1/2*(3*a*d*x*cos(d*x + c) - (2*b*x^3 - a)*sin(d*x + c))/(b^2*d^2*x^6 + 
 2*a*b*d^2*x^3 + a^2*d^2), x) + 2*(((b*cos(c)^2 + b*sin(c)^2)*d^2*x^3 + (a 
*cos(c)^2 + a*sin(c)^2)*d^2)*cos(d*x + c)^2 + ((b*cos(c)^2 + b*sin(c)^2)*d 
^2*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d^2)*sin(d*x + c)^2)*integrate(-1/2*(3* 
a*d*x*cos(d*x + c) - (2*b*x^3 - a)*sin(d*x + c))/((b^2*d^2*x^6 + 2*a*b*d^2 
*x^3 + a^2*d^2)*cos(d*x + c)^2 + (b^2*d^2*x^6 + 2*a*b*d^2*x^3 + a^2*d^2)*s 
in(d*x + c)^2), x) + ((d*x^2*sin(c) + x*cos(c))*cos(d*x + c)^2 + (d*x^2*si 
n(c) + x*cos(c))*sin(d*x + c)^2)*sin(d*x + 2*c))/(((b*cos(c)^2 + b*sin(c)^ 
2)*d^2*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d^2)*cos(d*x + c)^2 + ((b*cos(c)^2 
+ b*sin(c)^2)*d^2*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d^2)*sin(d*x + c)^2)
 
3.1.96.8 Giac [F]

\[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \sin \left (d x + c\right )}{b x^{3} + a} \,d x } \]

input
integrate(x^2*sin(d*x+c)/(b*x^3+a),x, algorithm="giac")
 
output
integrate(x^2*sin(d*x + c)/(b*x^3 + a), x)
 
3.1.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \sin (c+d x)}{a+b x^3} \, dx=\int \frac {x^2\,\sin \left (c+d\,x\right )}{b\,x^3+a} \,d x \]

input
int((x^2*sin(c + d*x))/(a + b*x^3),x)
 
output
int((x^2*sin(c + d*x))/(a + b*x^3), x)